Abstract
Selective attention allows us to filter out irrelevant information in the environment and focus neural resources on information relevant to our current goals. Functional brain-imaging studies have identified networks of broadly distributed brain regions that are recruited during different attention processes; however, the dynamics by which these networks enable selection are not well understood. Here, we first used functional MRI to localize dorsal and ventral attention networks in human epileptic subjects undergoing seizure monitoring. We subsequently recorded cortical physiology using subdural electrocorticography during a spatial-attention task to study network dynamics. Attention networks become selectively phase-modulated at low frequencies (δ, θ) during the same task epochs in which they are recruited in functional MRI. This mechanism may alter the excitability of task-relevant regions or their effective connectivity. Furthermore, different attention processes (holding vs. shifting attention) are associated with synchrony at different frequencies, which may minimize unnecessary cross-talk between separate neuronal processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.