Abstract

The frequency response of a cantilever beam is well known to depend strongly on the fluid in which it is immersed. In this article, we present a theoretical model for the frequency response of a rectangular cantilever beam immersed in a viscous fluid that enables the flexural and torsional modes of arbitrary order to be calculated. This extends the previous models of Sader and Green [J. Appl. Phys. 84, 64 (1998); 92, 6262 (2002)], which were formulated primarily for the fundamental mode and the next few harmonics, to the general case of arbitrary mode order by accounting for the three-dimensional nature of the flow field around the cantilever beam. Due to its importance in atomic force microscope applications, results for the thermal noise spectrum are presented and the influence of mode order on the frequency response investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.