Abstract

BackgroundRaising T-cell response against antigens either expressed on normal and malignant plasma cells (e.g. HM1.24) or aberrantly on myeloma cells only (e.g. cancer testis antigens, CTA) by vaccination is a potential treatment approach for multiple myeloma.ResultsExpression by GEP is found for HM1.24 in all, HMMR in 318/458 (69.4%), MAGE-A3 in 209/458 (45.6%), NY-ESO-1/2 in 40/458 (8.7%), and WT-1 in 4/458 (0.8%) of samples with the pattern being confirmed by RNA-sequencing. T-cell-activation is found in 9/26 (34.6%) of patient samples, i.e. against HM1.24 (4/24), RHAMM-R3 (3/26), RHAMM1-8 (2/14), WT-1 (1/11), NY-ESO-1/2 (1/9), and MAGE-A3 (2/8). In 7/19 T-cell activation responses, myeloma cells lack respective antigen-expression. Expression of MAGE-A3, HMMR and NY-ESO-1/2 is associated with adverse survival.Experimental designWe assessed expression of HM1.24 and the CTAs MAGE-A3, NY-ESO-1/2, WT-1 and HMMR in CD138-purified myeloma cell samples of previously untreated myeloma patients in the GMMG-MM5 multicenter-trial by gene expression profiling (GEP; n = 458) and RNA-sequencing (n = 152) as potential population regarding vaccination trials. We then validated the feasibility to generate T-cell responses (n = 72) against these antigens by IFN-γ EliSpot-assay (n = 26) related to antigen expression (n = 22). Lastly, we assessed survival impact of antigen expression in an independent cohort of 247 patients treated by high-dose therapy and autologous stem cell transplantation.ConclusionsAs T-cell responses can only be raised in a subfraction of patients despite antigen expression, and the number of responses increases with more antigens used, vaccination strategies should assess patients’ antigen expression and use a “cocktail” of peptide vaccines.

Highlights

  • Multiple myeloma is characterized by the accumulation of clonal plasma cells in the bone marrow and associated clinical signs and symptoms, especially those related to the displacement of normal hematopoiesis, generation of osteolytic bone disease, and production of a monoclonal protein [1]

  • Expression by gene expression profiling (GEP) is found for HM1.24 in all, HMMR in 318/458 (69.4%), MAGE-A3 in 209/458 (45.6%), NY-ESO-1/2 in 40/458 (8.7%), and WT-1 in 4/458 (0.8%) of samples with the pattern being confirmed by RNA-sequencing

  • Expression of MAGE-A3, HMMR and NY-ESO-1/2 is associated with adverse survival

Read more

Summary

Introduction

Multiple myeloma is characterized by the accumulation of clonal plasma cells in the bone marrow and associated clinical signs and symptoms, especially those related to the displacement of normal hematopoiesis, generation of osteolytic bone disease, and production of a monoclonal protein [1]. A further - and potentially even prophylactic - approach is the development of cancer vaccines generating myelomaspecific immunity selectively targeting malignant cells with limited toxicity to normal tissues [14,15,16]. Potential targets comprise those constitutively expressed on normal as well as on malignant plasma cells (e.g. HM1.24) [17,18,19], or those expressed on malignant cells but not their normal counterpart, e.g. cancer testis antigens (CTA). Raising T-cell response against antigens either expressed on normal and malignant plasma cells (e.g. HM1.24) or aberrantly on myeloma cells only (e.g. cancer testis antigens, CTA) by vaccination is a potential treatment approach for multiple myeloma

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.