Abstract
The free-to-roll behaviour of rigid and membrane rectangular wings with an aspect ratio of two was studied in wind tunnel experiments conducted at a chord Reynolds number of Rec = 46 000. Self-excited roll oscillations resulting from the fluid-structure interaction were studied in forced sinusoidal pitching motion in order to simulate gust encounters of small air vehicles. For the dynamic pitching cases, the frequency and phase of the self-excited roll oscillations can become synchronized (or locked-in) with the fundamental pitching frequency and its subharmonics. This is believed to be the first documented example of synchronization for this type of fluid-structure interaction. Depending on the amplitude and frequency of excitation (pitching motion), there are regions of decreased roll oscillations, which may be important for the gust response of small vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.