Abstract
This paper proposes a three-point Interpolated Discrete Fourier Transform (IpDFT) method for frequency estimation of a discrete-time sinusoidal signal. It is based on the maximum sidelobe decay (MSD) windows and is highly effective in rejecting the detrimental effect on the estimation accuracy due to the image component of the signal spectrum. This remarkable feature is achieved by using an analytical expression based on a suitable weighting of the three largest DFT spectrum samples. The proposed method provides good results when the effect of the spectral interference due to the image component dominates other estimation error sources. The accuracy of the proposed method and of other state-of-the-art methods such as the multi-point IpDFT methods and the four-parameter sine-fitting (4PSF) algorithm are compared through both computer simulations and experimental results in the case of ideal, noisy, and harmonically distorted sinusoids. A small number of acquired cycles is assumed in order to analyze situations in which the contribution from the image component interference is significant. The performed comparison shows that the proposed method outperforms the considered multi-point IpDFT methods when the Signal-to-Noise Ratio (SNR) is higher than 30 dB and the number of acquired cycles is enough small. The proposed method outperforms also the 4PSF algorithm when the frequency estimation error is dominated by harmonics rather than wideband noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.