Abstract

Fatigue failures of welded structure are subjected to occur due to multiaxial fatigue load and torsion. In the current research work, the frequency effect of torsion on rotating bending fatigue load is analyzed on AISI 1018 steel and AISI 4140 steel. To perform rotating bending torsional fatigue test of welded and un-welded specimens, a unit was designed and manufactured. Gas Tungsten Arc (GTA) welding was carried out on round bar of AISI 1018 steel and AISI 4140 steel welded using ER70-S2 filler metal for welded specimen. Later, the influence of torsional frequency on rotating bending with torsion is analyzed on both base metal and welded structures. The frequency of torsion was applied on the specimens were - 500 cycle, 1000 cycle, 1500 cycle, 2000 cycle and 2500 cycle. From the analysis, fatigue life of AISI 1018 and AISI 4140 base metal specimens (rotating bending and torsion) were not affected when torsion was applied at different frequencies. However, fatigue behavior of welded AISI 1018 and AISI 4140 specimens were highly affected by the frequency of torsion. For torsion applied at every 500 cycles, 83.8% reduction of fatigue life was observed for AISI 1018 welded specimen with respect to AISI 1018 base metal specimens. In addition, torsion applied for every 1000, 1500, 2000, and 2500 cycles; 81.9%, 80%, 77.1%, and 72.4% reduction on fatigue life were observed for AISI 1018 welded specimen compare to AISI 1018 base metal specimens, respectively. Welded AISI 4140 specimens experienced less change in fatigue life compare to welded AISI 1018 specimens. For torsion applied at every 500 cycles, 73.9% fatigue life reduction was observed for welded AISI 4140 specimens compare to AISI 4140 base metal specimens. For torsion applied at every 1000, 1500, 2000, and 2500 cycles; 65.2%, 60.8%, 50%, and 43.5% fatigue life reduction occurred on welded AISI 1018 specimen. Moreover, hardness measurements for welded specimens of AISI 4140 and AISI 1018 were performed longitudinally. For welded AISI 1018 specimen, 14.8% and 9.7% hardness decrease was observed longitudinally compare to AISI 1018 base metal specimen at heat-affected zone (HAZ) and from heat-affected zone through weld zone, respectively. For welded AISI 4140 specimen, 26.3% reduction of hardness value was observed compare to AISI 4140 base metal through heat-affected zone for longitudinal analysis. Moreover, fracture surface analysis was performed on the welded and non-welded specimens to understand the fracture behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.