Abstract

Frequency-difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029] is a nonlinear, out-of-band signal processing technique used to beamform non-zero bandwidth signals at below-band frequencies. This is accomplished with the frequency-difference autoproduct AP(Δω)=P(ω2)P*(ω1), a quadratic product of complex field amplitudes that mimics a genuine field at the difference frequency, Δω=ω2-ω1. For frequency-difference beamforming, AP(Δω) replaces the in-band complex field in the conventional beamforming algorithm. Here, the near-field performance of frequency-difference beamforming is evaluated in the presence of 1 to 30 high-contrast spherical scatterers with radius a placed between, and in the plane defined by the source and a 12-element linear receiving array with element spacing d. Based on the center frequency wave number, k, of the 150-200 kHz frequency sweep source signal, the scatterers are large, ka ≈ 15; the array is sparse, kd = 37; and the average source-to-receiver distance is up to 4.3 mean-free-path lengths. Beamforming results from simulations and experiments show that in-band beamforming loses peak-to-sidelobe ratio and fails to reliably locate the source as the scatterer count increases. Using the same signals, frequency-difference beamforming with difference frequencies from 5 to 25 kHz localizes sources reliably with higher peak-to-side-lobe ratios, though with reduced resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.