Abstract

Vacuum freeze-drying of biological materials is one of the best methods of water removal, with final products of highest quality. The solid state of water during freeze-drying protects the primary structure and the shape of the products with minimal volume reduction. In addition, the lower temperatures in the process allow maximal nutrient and bioactive compound retention. This technique has been successfully applied to diverse biological materials, such as meats, coffee, juices, dairy products, cells, and bacteria, and is standard practice for penicillin, hormones, blood plasma, vitamin preparations, etc. Despite its many advantages, having four to ten times more energy requirements than regular hot air drying, freeze-drying has always been recognized as the most expensive process for manufacturing a dehydrated product. The application of the freeze-drying process to plant-based foods has been traditionally dedicated to the production of space shuttle goods, military or extreme-sport foodstuffs, and specialty foods such as coffee or spices. Recently, the market for ‘natural’ and ‘organic’ products is, however, strongly growing as well as the consumer’s demand for foods with minimal processing and high quality. From this perspective, the market for freeze-dried plant-based foods is not only increasing but also diversifying. Freeze-dried fruits and vegetables chunks, pieces, or slices are nowadays majorly used in a wide range of food products such as confectionaries, morning cereals, soups, bakeries, meal boxes, etc. Instant drinks are prepared out of freeze-dried tea, coffee, or even from maple syrup enriched with polyphenol concentrated extracts from trees. The possibilities are endless. In this review, the application of freeze-drying to transform plant-based foods was analyzed, based on the recent research publications on the subject and personal unpublished data. The review is structured around the following related topics: latest applications of freeze-drying to plant-based foods, specific technological problems that could be found when freeze-drying such products (i.e., presence of cuticle; high sugar or lipid concentration), pretreatments and intensification technologies employed in freeze-drying of plant-based foods, and quality issues of these freeze-dried products.

Highlights

  • Plant-based foods, including fruits, vegetables, seeds, beans, spices, etc., are important components of a healthy diet, and their sufficient regular consumption could help to prevent certain major diseases such as cancer and cardiovascular diseases, etc

  • Intracuticular waxes are embedded in the cutin polymer matrix itself, though little information is available on its composition [36]. This external waxy layer makes freeze-drying of whole fruits/vegetables challenging since vapor generated by ice sublimation during the primary step is trapped inside the product, increasing its pressure and melting the ice

  • In terms of preserving β-carotene, lycopene, vitamin E, unsaturated oils, and other lipid-based oxidizable bio-compounds in fruits and vegetables, freeze-drying and storage of freeze-dried products should be taken with high consideration since autocatalytic oxidative reactions are accelerated at very low water activities achieved during freeze drying

Read more

Summary

Introduction

Plant-based foods, including fruits, vegetables, seeds, beans, spices, etc., are important components of a healthy diet, and their sufficient regular consumption could help to prevent certain major diseases such as cancer and cardiovascular diseases, etc. Freeze drying (FD), known as lyophilization, is a well-known technique for the production of high quality food powders and solids [2,3]. It is a preferred method for drying foods containing compounds that are thermally sensitive and prone to oxidation since it operates at low temperatures and under high vacuum. Freeze-drying method by lack of liquid water, oxygen-free environment (if operated under vacuum), and low operating temperatures is the best choice to dehydrate fruits and vegetables in order to keep an optimized biocompound content in the final products. The aim of current review was to highlight the application of FD of plant-based foods, to point out some particular technological challenges, and describe process intensification in FD of plant-based foods to improve the quality of freeze-dried foods or to accelerate the process

FD Principle
Characteristics of Plant-Based
Fruits
Vegetables
Speciality Foods
Nontraditional Source
Generalities about Impact of Freeze-Drying on Biocompounds
Pretreatments and Process Intensification
Conclusions
Findings
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.