Abstract

Lithium-sulfur (Li-S) batteries have been regarded as a promising candidate of secondary batteries to satisfy the enormous demand for electric vehicles and energy storage applications. However, Li-S batteries still suffer from severe capacity fading due to the shuttle effect of lithium polysulfides. Here, we develop a freestanding double-layer MoO3/carbon nanotube@S (FMC@S) membrane by hydrothermal and suction filtration strategy, without polymer binder and current collector substrate. FMC@S contains a polysulfide blocking layer and an active material layer. Except for S content, the two layers have the same components and are integrated together, so there is no distinct interface between the two layers, which can facilitate ion and electron transport. As a result, the FMC@S cathode delivers promising capacity retention and rate capability. The hierarchical integrated design provides a new strategy to develop high-performance flexible cathodes for Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.