Abstract

Dynamics of a cantilever honeycomb sandwich plate are studied in this paper. The governing equations of the composite plate subjected to both in‐plane and transverse excitations are derived by using Hamilton’s principle and Reddy’s third‐order shear deformation theory. Based on the Rayleigh–Ritz method, some modes of natural frequencies for the cantilever honeycomb sandwich plate are obtained. The relations between the natural frequencies and the parameters of the plate are investigated. Further, the Galerkin method is used to transform the nonlinear partial differential equations into a set of nonlinear ordinary differential equations. Nonlinear dynamic responses of the cantilever honeycomb sandwich plate to such external and parametric excitations are discussed by using the numerical method. The results show that in‐plane and transverse excitations have an important influence on nonlinear dynamic characteristics. Rich dynamics, such as periodic, multiperiodic, quasiperiodic, and chaotic motions, are located and studied by the bifurcation diagram for some specific parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.