Abstract

A vibration study of thin, laminated plate assemblies is conducted by using the h- p version of the finite element method (FEM). Polynomially-enriched stiffness and mass matrices are derived from classical plate theory using Symbolic Computing, and then stored in algebraic form for a single, generic element. A number of such elements may then be combined to form the global stiffness and mass matrices for a more general planar assembly. Any of the classical edge conditions, or point corner supports, may be accommodated in the analysis, and the natural frequencies are sought from a standard matrix-eigenvalue problem. Excellent agreement has been found with the work of other investigators. The h- p method is shown, by example, to offer considerable savings in computational effort when compared with the standard h-version of the FEM. One further development of the method is presented which illustrates how it might form the basis of a condition monitoring measuring technique based on natural frequency shifts arising from non-propagating, through-the-thickness, crack damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.