Abstract

AbstractThe natural frequencies and mode shapes for the radial (in‐plane) bending vibrations of the uniform circular arches were investigated by means of the finite arch (curved beam) elements. Instead of the complicated explicit shape functions of the arch element given by the existing literature, the simple implicit shape functions associated with the tangential, radial (or normal) and rotational displacements of the arch element were derived and presented in matrix form. Based on the relationship between the nodal forces and the nodal displacements of a two‐node six‐degree‐of‐freedom arch element, the elemental stiffness matrix was derived, and based on the equation of kinetic energy and the implicit shape functions of an arch element the elemental consistent mass matrix with rotary inertia effect considered was obtained. Assembly of the foregoing elemental property matrices yields the overall stiffness and mass matrices of the complete curved beam. The standard techniques were used to determine the natural frequencies and mode shapes for the curved beam with various boundary conditions and subtended angles. In addition to the typical circular arches with constant curvatures, a hybrid beam constructed by using an arch segment connected with a straight beam segment at each of its two ends was also studied. For simplicity, a lumped mass model for the arch element was also presented. All numerical results were compared with the existing literature or those obtained from the finite element method based on the conventional straight beam element and good agreements were achieved. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.