Abstract

Aircraft experience various phases during each flight. Optimal performance, without compromise, during various phases can be achieved through adaptability in the wing design. Morphing wing design encompasses most, if not all, the flight conditions variations, and can respond interactively. In the present work, the dynamic characteristics of a reconfigurable modular morphing wing of two topological architectures, developed in-house by a research group at Toronto Metropolitan University (formerly Ryerso University), were investigated. This modular morphing wing, developed based on the idea of a parallel robot, consists of a number of structural elements connected to each other and to the wing ribs through eye-bolt joints. Euler–Bernoulli and Timoshenko bending beam theories, in conjunction with Finite Element Analysis, were exploited. Free vibration of unmorphed (Original) and morphed configurations subjected to spanwise extensions were studied. The results of systems’ free vibration analyses were validated against those obtained from Ansys and Dynamic Stiffness Matrix (DSM) method. The effect of various spanwise extensions, as well as topology on system’s natural frequencies, was also studied and reported on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.