Abstract

Lamb wave microresonators with wavelengths λ of 5–8 μm, vibrating in the S0 mode, and having 75 electrode pairs were fabricated and characterized. The results were compared to theoretical predictions obtained by finite element simulation. The active material was a 1 μm-thick Al0.85Sc0.15N thin film. Two types of acoustic isolation solutions were implemented: the first one with freestanding plates fixed by two bridges to a device frame [freestanding Lamb wave resonator (FS-LWR)] and the second one containing an acoustic W/SiO2 5-layer reflector [solidly mounted Lamb wave resonator (SM-LWR)]. All devices showed excellent agreement with FEM predictions, regarding resonance frequency and piezoelectric coupling. The quality factors of the SM-LWR devices were 5–6 times larger than the ones of the freestanding structures fabricated by the same Al0.85Sc0.15N deposition process: we achieved a figure of merit of 12–18 (Qp = 771, Qs = 507, k2 = 2.29%) at an operation frequency of 1430 MHz, which is so far the best performance realized with a MEMS Lamb wave resonator having a large number of electrode fingers. This performance opens up perspectives for filter applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.