Abstract
We develop general counting formulas for primary fields in free four dimensional (4D) scalar conformal field theory (CFT). Using a duality map between primary operators in scalar field theory and multivariable polynomial functions subject to differential constraints, we identify a sector of holomorphic primary fields corresponding to polynomial functions on a class of permutation orbifolds. These orbifolds have palindromic Hilbert series, which indicates they are Calabi-Yau orbifolds. We construct the unique top-dimensional holomorphic form expected from the Calabi-Yau property. This sector includes and extends previous constructions of infinite families of primary fields. We sketch the generalization of these results to free 4D vector and matrix CFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.