Abstract

Nitrite has generally been recognized as an inhibitor of N2O reduction during denitrification. This inhibitory effect is investigated under various pH conditions using a denitrifying-enhanced biological phosphorus removal (EBPR) sludge. The degree of inhibition was observed to correlate much more strongly with the free nitrous acid (FNA) concentration than with the nitrite concentration, suggesting that FNA, rather than nitrite, is likely the true inhibitor on N2O reduction. Fifty percent inhibition was observed at an FNA concentration of 0.0007-0.001 mg HNO2-N/L (equivalent to approximately 3-4 mg NO2(-) -N/L at pH 7), while complete inhibition occurred when the FNA concentration was greater than 0.004 mg HNO2-N/L. The results also suggest that the inhibition on N2O reduction was not due to the electron competition between N2O and NO2- reductases. The inhibition was found to be reversible, with the rate of recovery independent of the duration of the inhibition, but dependent on the concentration of FNAthe biomass was exposed to during the inhibition period. A higher FNA concentration caused slower recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.