Abstract
Elevated fatty acid levels play a pathogenic role in the development of insulin resistance, associated with type 2 diabetes. Interventions with ability to ameliorate fatty acid-induced insulin resistance might be useful for the management of diabetes. Here, we explored the effect of the diastereomeric mixture of calophyllic acid and isocalophyllic acid (F015) on palmitate-induced insulin resistance in skeletal muscle cells. An incubation of L6 myotubes with palmitate inhibited insulin-stimulated glucose uptake and translocation of GLUT4 to cell surface. Addition of F015 strongly prevented these inhibitions. Furthermore, F015 effectively inhibited the ability of palmitate to reduce insulin-stimulated phosphorylation of IRS-1, AKT and GSK-3β in L6 myotubes. F015 presented a strong inhibition on palmitate-induced production of reactive oxygen species and associated inflammation, as the activation JNK, ERK1/2 and p38 MAPK were greatly reduced. F015 also inhibited inflammation-stimulated IRS-1 serine phosphorylation and restored insulin-stimulated IRS-1 tyrosine phosphorylation in presence of palmitate, resulted in enhanced insulin sensitivity. Results suggest that F015 inhibits palmitate-induced, reactive oxygen species-associated MAPK kinase activation and restored insulin sensitivity through regulating IRS-1 function. All these indicate F015 to be a potentially therapeutic candidate for insulin resistance and type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.