Abstract

Properties of planar as well as nonplanar ion acoustic freak waves that propagate in a plasma composed of warm ions and two-temperature electron plasma having kappa-distribution are reported. The dynamics of the nonlinear freak waves is governed by a modified nonlinear Schrodinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of Saturn’s magnetosphere. For planar case, stability/instability analyses reveals that there is a critical value (f cr ) of f (i.e., the equilibrium density ratio of the hot-to-cold electron species) exists for low wave number k. For large wave number k, the stability domain is always a decreasing function in f. Low κ values, which indicate that an excess of suprathermal particles in the tail of the distribution, shifts f cr to higher values. Also, there exists a modulation instability period for the cylindrical and spherical envelope excitations, which does not exist in the one-dimensional case. Furthermore, cylindrical and spherical freak waves are investigated numerically. Spherical ion-acoustic freak waves are found to grow faster than the cylindrical waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.