Abstract

Signal averaging is the process that consists in computing a mean shape from a set of noisy signals. In the presence of geometric variability in time in the data, the usual Euclidean mean of the raw data yields a mean pattern that does not reflect the typical shape of the observed signals. In this setting, it is necessary to use alignment techniques for a precise synchronization of the signals, and then to average the aligned data to obtain a consistent mean shape. In this paper, we study the numerical performances of Frechet means of curves which are extensions of the usual Euclidean mean to spaces endowed with non-Euclidean metrics. This yields a new algorithm for signal averaging and for the estimation of the time variability of a set of signals. We apply this approach to the analysis of heartbeats from ECG records.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.