Abstract
Electrocatalytic oxygen reduction reaction via 2e- pathway is a safe and friendly route for hydrogen peroxide (H2O2) synthesis. In order to achieve efficient synthesis of H2O2, it is essential to accurately control the active sites. Here, fragmented polymetric carbon nitride with rich defects (DCN) is designed for H2O2 electrosynthesis. The multi-type defects, including the sodium atom doping in six-fold cavities, the boron atom doping at N-B-N sites and the cyano groups, are successfully created. Owing to the synergistic effect of these defects, the fragmented DCN achieves a high H2O2 production rateof 2.28 mol gcat. -1 h-1 and a high Faradic efficiency of nearly 90 % in alkaline media at 0.4 V vs. RHE in H-type cell. In neutral media, the H2O2 concentration produced by DCN can reach 1815 μM within 6 h at a potential of 0.2 V vs. RHE, and the H2O2 production rate of DCN is 0.23 mol gcat. -1 h-1. In addition, DCN shows excellent long-term durability in alkaline and neutral media. This study provides a new approach for the development of the boron, nitrogen doped carbon-based electrocatalysts for H2O2 electrochemical synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.