Abstract
We perform a study of the fragmentation path of excited nuclear sources, within the framework of a stochastic mean-field approach. We consider the reaction 129Xe + 119Sn at two beam energies: 32 and 50 MeV/ A, for central collisions. It is observed that, after the compression phase the system expands towards a dilute configuration from which it may recontract or evolve into a bubble-like structure. Then fragments are formed through the development of volume and/or surface instabilities. The two possibilities co-exist at 32 MeV/ A, leading to quite different fragment partitions, while at 50 MeV/ A the hollow configuration is observed in all events. Large variances are recovered in a way fully consistent with the presence of spinodal decomposition remnants. Kinematical properties of fragments are discussed and suggested as observables very sensitive to the dominant fragment production mechanism. A larger radial collective flow is observed at 50 MeV/ A, in agreement with experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.