Abstract

The development of catalysts for the production of polyethylene and polypropylene is ordinarily accomplished on a trial-and-error experimentation program. From the point-of-view of the fragmentation performance, support porosity is the key property affecting the mechanical support resistance, and, therefore, it determines the fragmentation process during the early moments of polymerization. The design of the support porosity can be more accurately determined by applying the theoretical knowledge acquired from previous research, but this is not consolidated for catalyst design. This article reports a methodology to optimize the support porosity using a simple fundamental model of the fragmentation process. Using this approach, the design of fragmentation-oriented supports can be achieved for polymerization reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.