Abstract

Fragmentation of doubly charged argon clusters is reported. Neutral argon clusters are excited with monochromatized synchrotron radiation in the energy regime of the argonL 3/L 2 absorption edges (240–260 eV) leading predominantly to cluster dication formation. All charged particles are detected in a photoelectron-photoion-photoion-concidence (PEPIPICO) experiment. Symmetric and asymmetric charge separation reactions (Coulomb explosion) are identified for clusters below the critical size of stable dication formation. The peak shapes of the coincidence signals are investigated as a function of neutral cluster size. Characteristic changes in peak shape are observed which are used to derive fragmentation mechanisms involving sequential evaporation of neutrals before and after charge separation. The spectra indicate in accordance with low kinetic energy releases occurring in charge separation of large dissociative cluster dications (Ar 2+ , withn>50) that due to large charge separation distances the momenta of both singly charged fragments are not any more directed into opposite direction, as it is typical for Coulomb explosion. The results are compared to collision induced fragmentation of mass selected argon cluster dications as well as photon stimulated desorption spectra of condensed argon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.