Abstract
We theoretically investigate fragmentation processes induced by femtosecond laser pulses within a model which incorporates electronic and nuclear motion. Single-pulse excitation leads to diffraction patterns in the electron momentum distribution which depend on the nature of the electronic state and also on the nuclear charge distribution. Additional structures appear in the nuclear momentum distribution if two time-delayed pulses produce fragments in the same dissociation channel. It is shown that these functions are modified by the electronic degree-of-freedom. A simultaneous excitation of two different electronic states results in further interferences which are related to electronic wave-packet dynamics on the attosecond time-scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.