Abstract

Fracture toughness was studied in terms of crack-tip opening displacement (CTOD) in low-C medium-Mn high-strength steel at both room temperature and − 40 °C, and excellent fracture toughness was obtained. The critical CTOD values (δ) and crack extension (∆a) followed the relationship: δ = 0.01343 + 0.62315∆a0.47531 and δ = 0.07391 + 0.48466∆a0.60103 at room temperature and − 40 °C, respectively. With the decrease in test temperature from room temperature to − 40 °C, the corresponding δ when ∆a = 0.2 mm (δ0.2) was reduced from 0.30341 to 0.25813 mm, and intersecting point in the crack extension resistance curve with a 0.2-mm passivation line (δQ0.2BL) was reduced from 0.42132 to 0.33941 mm. The large fraction of high misorientation boundaries between tempered martensite effectively hindered the crack propagation and increased the fracture toughness. Furthermore, the submicron-scale complex laminated microstructure of tempered martensite and reversed austenite refined the effective fracture grain size, which inhibited crack propagation and led to high fracture toughness. Also, the excellent fracture toughness is attributed to strain-induced martensite transformation of reversed austenite in the small plastic deformation zone ahead of the crack tip, which absorbed the strain energy, relaxed the local stress concentration, suppressed the crack propagation, and enhanced the fracture toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.