Abstract
To evaluate the fracture resistance of computer-aided design and computer-assisted manufacturing restorations as the abutment of removable partial dentures, experimental blocks, with the rest seat made of feldspar, hybrid resin composite, lithium disilicate glass ceramic, or zirconia, were subjected to loading by a metallic occlusal rest. The rest contacted the rest seat with an accurate fit and two mismatch contact conditions: bottom and sidewall contact. Zirconia exhibited the highest fracture load, and the fracture load of the accurate fit was significantly higher than that of the sidewall contact (p<0.05) and insignificantly higher than that of the bottom contact (p>0.05). A finite element analysis of the sidewall contact revealed a higher tensile stress concentration at the bottom of the rest seat than the other contact conditions. The mismatch between the rest and the restoration reduced fracture resistance, while zirconia as the abutment withstood the average occlusal force of the posterior region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.