Abstract

A method to predict the ultimate strength of adhesive joints has been evaluated for the quasi-static loading of a variety of cracked-lap shear (CLS) and single-lap shear (SLS) joints bonded with a high-strength, toughened epoxy adhesive. The adhesive strength was experimentally characterized in terms of the steady-state critical strain energy release rate, G c s , as a function of the loading phase angle, using double cantilever beam (DCB) joints. Comparing the calculated energy release rate using the J-integral with the G c s at the corresponding phase angle, the ultimate failure load in the fracture joint was predicted and compared with experimental results. When the toughening of the adhesive during subcritical crack growth (i.e. its R-curve behavior) was considered in the analysis, good agreement between the predicted and experimental failure loads was achieved, both for joints made with aluminum or steel adherends. The initial condition at the end of joint overlap (fillet or precrack) did not affect the ultimate joint strength because of the significant amount of subcritical crack growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.