Abstract

The fracture of V-notches with end holes made of tungsten-copper functionally graded material under mode I has been studied in this paper. The averaged strain energy density over a well-defined control volume was employed to predict the fracture loads. A numerical approach was used to determine the outer boundary of the control volume. Mechanical properties such as elasticity modulus, Poisson’s ratio, fracture toughness KIc, and ultimate tensile stress have been considered to obey the power law function through the specimen width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.