Abstract
Hybrid composite systems consisting of liquid crystalline polymer (LCP), short glass fibers and toughened nylon in varied ratios were studied. Dynamic mechanical results indicated that, elastomeric phase in toughened nylon 6,6 promoted a better compatibilization between nylon 6,6 and LCP in a hybrid system containing short glass fibers in comparison with one without glass fibers. Improved compatibility facilitated fibrillation of LCP phase in the skin region of the hybrid composite, thereby providing superior tensile strength. Without the presence of LCP, glass fiber reinforced toughened nylon 6,6 exhibited the least tensile strength. J-integral analysis and essential work of fracture (EWF) method were used to compare the fracture behavior of composites. Results showed that specific essential work of fracture were consistent with the critical J-integral. Matrices reinforced by LCP alone showed the best crack initiation and propagation toughnesses, followed by glass fiber reinforced and hybrid composites. The better compatibility between nylon 6,6 and LCP appeared to inhibit the interfacial debonding process, resulting in brittle fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.