Abstract

Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance composite delamination resistance, and possibly improve toughness. In the present study, aligned CNTs were grown upon carbon fabric via chemical vapor deposition. Continuously monitored single-fiber composite fragmentation tests were performed on pristine and CNT-grafted fibers embedded in epoxy, and single-laminate compact-tension specimens were tested for fracture behavior. A significant increase (up to 20 %) was observed in the interfacial adhesion, at the cost of a decrease in the fiber tensile strength. As a result, the maximum load of the composite was decreased, but its residual load-bearing capacity more than doubled. The likely sources of these effects are discussed, as well as their implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.