Abstract

The oldest Swedish reactor is a boiling water reactor (BWR) with a vessel made of A302 Grade B with rather high Cu and Ni content. These elements have intensified the irradiation embrittlement in the beltline region so that RT NDT of certain welds may exceed 100 °C at the end-of-life condition. A preliminary study of the fracture risk for the beltline region showed that the limiting loading case would be the cold over-pressurization of the reactor. The objective of this study was to develop a reliable methodology for fracture assessment of the aged reactor vessel under cold loading scenarios. The test program covered experiments on standard SEN(B) specimens and clad beams under uniaxial and biaxial loading. The test material was a reactor vessel steel prepared with a special heat treatment to simulate fracture toughness properties of the aged reactor. No significant effects of shallow crack and biaxial loading were observed on cleavage fracture toughness in different clad specimens. While the ASME K Ic reference curve was shown to be overly conservative, the Master Curve methodology satisfactorily predicted the experimental outcomes of the test program. The Master Curve methodology indicated that a 20-mm deep surface crack was acceptable in the beltline region under a cold over-pressurization scenario. This value was three times greater than what a methodology based on the ASME K Ic reference curve yielded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.