Abstract

Abstract The (complex-valued) Brownian motion of order n is defined as the limit of a random walk on the complex roots of the unity. Real-valued fractional noises are obtained as fractional derivatives of the Gaussian white noise (or order two). Here one combines these two approaches and one considers the new class of fractional noises obtained as fractional derivative of the complex-valued Brownian motion of order n. The key of the approach is the relation between differential and fractional differential provided by the fractional Taylor’s series of analytic function f ( z + h ) = E α ( h α D z α ) · f ( z ) , where Eα is the Mittag–Leffler function on the one hand, and the generalized Maruyama’s notation, on the other hand. Some questions are revisited such as the definition of fractional Brownian motion as integral w.r.t. (dt)α, and the exponential growth equation driven by fractional Brownian motion, to which a new solution is proposed. As a first illustrative example of application, in mathematical finance, one proposes a new approach to the optimal management of a stochastic portfolio of fractional order via the Lagrange variational technique applied to the state moment dynamical equations. In the second example, one deals with non-random Lagrangian mechanics of fractional order. The last example proposes a new approach to fractional stochastic mechanics, and the solution so obtained gives rise to the question as to whether physical systems would not have their own internal random times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.