Abstract

PurposeFractional slot permanent magnet (PM) brushless machines having concentrated non‐overlapping windings have been the subject of research over last few years. They have already been employed in the commercial hybrid electric vehicles (HEVs) due to high‐torque density, high efficiency, low‐torque ripple, good flux‐weakening and fault‐tolerance performance. The purpose of this paper is to overview recent development and research challenges in such machines in terms of various structural and design features for electric vehicle (EV)/HEV applications.Design/methodology/approachIn the paper, fractional slot PM brushless machines are overviewed according to the following main and sub‐topics: first, machine topologies: slot and pole number combinations, all and alternate teeth wound (double‐ and single‐layer windings), unequal tooth structure, modular stator, interior magnet rotor; second, machine parameters and control performance: winding inductances, flux‐weakening capability, fault‐tolerant performance; and third, parasitic effects: cogging torque, iron loss, rotor eddy current loss, unbalanced magnetic force, acoustic noise and vibration.FindingsMany fractional slot PM machine topologies exist. Owing to rich mmf harmonics, fractional slot PM brushless machines exhibit relatively high rotor eddy current loss, potentially high unbalanced magnetic force and acoustic noise and vibration, while the reluctance torque component is relatively low or even negligible when an interior PM rotor is employed.Originality/valueThis is the first overview paper which systematically reviews the recent development and research challenges in fractional‐slot PM machines. It summarizes their various structural and design features for EV/HEV applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.