Abstract
Electrons' multiple quantum degrees of freedom can lead to rich physics, including a competition between various exotic ground states, as well as novel applications such as spintronics and valleytronics. Here we report magneto-transport experiments demonstrating how the valley degree of freedom impacts the fractional quantum states (FQHSs), and the related magnetic-flux-electron composite fermions (CFs), at very high magnetic fields in the extreme quantum limit when only the lowest Landau level is occupied. Unlike in other multivalley two-dimensional electron systems such as Si or monolayer graphene and transition-metal dichalcogenides, in our AlAs sample we can continuously tune the valley polarization via the application of in-situ strain. We find that the FQHSs remain exceptionally strong even as they make valley polarization transitions, revealing a surprisingly robust ferromagnetism of the FQHSs and the underlying CFs. Our observation implies that the CFs are strongly interacting in our system. We are also able to obtain a phase diagram for the FQHS and CF valley polarization in the extreme quantum limit as we monitor transitions of the FHQSs with different valley polarizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.