Abstract

Impedance control is an important method in robot–environment interaction. In traditional impedance control, the damping force is regarded as a linear viscoelastic model, which limits the description of the dynamic model of the impedance system to a certain extent. For the robot manipulator, the optimal impedance parameters of the impedance controller are the key to improve the performance. In this paper, the damping force is described more accurately by fractional calculus than the traditional viscoelastic model, and a fractional-order impedance controller for the robot manipulator is proposed. A practical and systematic tuning procedure based on the frequency design method is developed for the proposed fractional-order impedance controller. The fairness of comparison between the fractional-order impedance controller and the integer-order impedance controller is addressed under the same specifications. Fair comparisons of the two controllers via the simulation and experiment tests show that, in the step response, the fractional-order impedance controller has a better integral time square error (ITSE) result, smaller overshoot and less settling time than the integer-order impedance controller. In terms of anti-disturbance, the fractional-order impedance controller can achieve stability with less recovering time and better ITSE index than integer order impedance controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.