Abstract

In this paper, a novel fractional-order fuzzy sliding mode control strategy is developed to realize the deployment of the tethered satellite system (TSS) with input saturation. The considered TSS is modeled as an underactuated system. By decoupling the underactuated system into two subsystems, a fractional-order and a constrained integer-order sliding surfaces are designed for the actuated and unactuated subsystems, respectively. Then, a new hybrid sliding manifold is obtained by coupling the two subsliding surfaces. Adaptive fuzzy algorithm is used to regulate the coupling coefficient in the newly proposed hybrid sliding manifold in order to procure satisfactory performance. Meanwhile, the saturation nonlinearity of control input is also considered. The asymptotic stability of the closed-loop system is demonstrated theoretically. With the existence of fractional order, the presented controller can perform faster and more smooth tether deployment when compared with conventional ones. Finally, the effectiveness and superiority of the proposed control approach are validated by illustrative simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.