Abstract
Imputation procedures such as fully efficient fractional imputation (FEFI) or multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Multiple imputation generates a finite set of imputations through a posterior predictive distribution. Fractional imputation assigns weights to the observed data. The focus of this article is the development of FEFI for partially classified two-way contingency tables. Point estimators and variances of FEFI estimators of population proportions are derived. Simulation results, when data are missing completely at random or missing at random, show that FEFI is comparable in performance to maximum likelihood estimation and multiple imputation and superior to simple stochastic imputation and complete case anlaysis. Methods are illustrated with four data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.