Abstract

The Kapustin-Fidkowski no-go theorem forbids U(1) symmetric topological orders with non-trivial Hall conductivity in (2+1)d from admitting commuting projector Hamiltonians, where the latter is the paradigmatic method to construct exactly solvable lattice models for topological orders. Even if a topological order would intrinsically have admitted commuting projector Hamiltonians, the theorem forbids so once its interplay with U(1) global symmetry which generates Hall conductivity is taken into consideration. Nonetheless, in this work, we show that for all (2+1)d U(1) symmetric abelian topological orders of such kind, we can construct a lattice Hamiltonian that is controllably solvable at low energies, even though not “exactly” solvable; hence, this no-go theorem does not lead to significant difficulty in the lattice study of these topological orders. Moreover, for the fermionic topological orders in our construction, we introduce the lattice notion of spin-c structure — a concept important in the continuum that has previously not been adequately introduced in the lattice context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.