Abstract

Wireless Sensor Networks (WSN) consists of numerous of low cost and less-energy sensor nodes that are responsible to gather and transmit the data packets from one node to destination point. WSN has a wide range of applications over agriculture, military, traffic monitoring, instrument surveillance, and security monitoring. In WSN, the nodes are located in a specific region to create a wireless network. The effective data communication among sensors is a challenging task because of different complex parameters. Typically, clustering is a well-preferred methodology to provide the effective communication by partitioning the nodes into different clusters. Every cluster possesses individual cluster head that transmits the data to other sensor nodes. Therefore, it is substantial to choose optimal cluster head and optimal route for effective transmission with less energy consumption and less delay. To increase the network efficiency and sink utilization, an energy aware routing algorithm called Fractional Competitive Fruit Fly Optimizer (FrCFFO) is designed, which is an integration of Fractional concept into the Competitive Fruit Fly Optimizer (CFFO). Here, the energy prediction is performed using Deep Quantum Neural Network (QNN). Effective CH selection and routing is done using the proposed FrCFFO and the fitness parameter is considered depending upon the factors like energy, distance, link lifetime, trust, and delay. Moreover, the developed FrCFFO has achieved effective performance with minimum delay of 0.098sec, maximum energy of 0.233J, and maximum PDR of 90.81%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.