Abstract

Waveforms are planar curves—ordered collections of ( x, y) point pairs—where the x values increase monotonically. One technique for numerically classifying waveforms assesses their fractal dimensionality, D. For waveforms: D = log(n) ( log(n) + log( d L )) , with n = number of steps in the waveform (one less than the number of ( x, y) point pairs), d = planar extent (diameter) of the waveform, and L = total length of the waveform. Under this formulation, fractal dimensions range from D = 1.0, for strainght lines through approximately D = 1.15 for random-walk waveforms, to D approaching 1.5 for the most convoluted waveforms. The fractal characterization may be especially useful for analyzing and comparing complex waveforms such as electroencephalograms (EEGs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.