Abstract

The fractal properties of propagating aqueous autocatalytic chemical reaction fronts are measured in a capillary-wave (CW) flow at values of the ratio of the RMS intensity of the fluid velocity fluctuation (u′) to the laminar propagation rate of the front (SL) up to 220. The images of the fronts are found to exhibit fractal behavior with a fractal dimension (d) of 1.31±0.06, which is very similar to some measurements in gaseous flame fronts, as well as isoscalar contours of passive dyes in CW and other randomly stirred flows. These results suggest that u′/SL, thermal expansion, variations of viscosity and diffusivity across the flame front, and the turbulence spectrum do not significantly affect d in randomly stirred flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.