Abstract

The fractal geometries are applied extensively in many applications like pattern recognition, texture analysis and segmentation. The application of fractal geometry requires estimation of the fractal features. The fractal dimension and fractal length are found effective to analyze and measure image features, such as texture, resolution, etc. This paper proposes a new wavelet–fractal technique for image resolution enhancement. The resolution of the wavelet sub-bands are improved using scaling operator and then it is transformed into texture vector. The proposed method then computes fractal dimension and fractal length in gradient domain which is used for resolution enhancement. It is observed that by using scaling operator in the gradient domain, the fractal dimension and fractal length becomes scale invariant. The major advantage of the proposed wavelet–fractal technique is that the feature vector retains fractal dimension and fractal length both. Thus, the resolution enhanced image restores the texture information well. The texture information has also been observed in terms of fractal dimension with varied sample size. We present qualitative and quantitative analysis of the proposed method with existing state of art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.