Abstract

It is of enormous significance to detect abnormal brains automatically. This paper develops an efficient pathological brain detection system based on the artificial intelligence method. We first extract brain edges by a Canny edge detector. Next, we estimated the fractal dimension using box counting method with grid sizes of 1, 2, 4, 8, and 16, respectively. Afterward, we employed the single-hidden layer feedforward neural network. Finally, we proposed an improved particle swarm optimization based on three-segment particle representation, time-varying acceleration coefficient, and chaos theory. This three-segment particle representation encodes the weights, biases, and number of hidden neuron. The statistical analysis showed the proposed method achieves the detection accuracies of 100%, 98.19%, and 98.08% over three benchmark data sets. Our method costs merely 0.1984 s to predict one image. Our performance is superior to the 11 state-of-the-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.