Abstract

Abstract The present study evaluated pore surface fractal characteristics of high-strength cement pastes with different ground granulated blast-furnace slag (GGBFS) replacement ratios. Using the results of mercury intrusion porosimetry measurements, the surface fractal dimension in various pore-size ranges was calculated. Experimental results show that the fractal characteristics appeared in mesopores in range of 6–10 nm and 10–25 nm and larger capillary pores with sizes of more than 100 nm. In larger capillary pores, as the GGBFS replacement ratio increased up to 65%, the surface fractal dimension and pore volume decreased, and they increased when the GGBFS replacement ratio increased from 65% to 80%. In contrast, higher GGBFS replacement ratios in mesopore regions resulted in an increased surface fractal dimension and pore volume. Furthermore, in the regions where fractal characteristics appeared, pore volume and the surface fractal dimension exhibited a proportional relationship. The ratio of the surface fractal dimension to the volume of larger capillary pores was strongly correlated with the compressive strength of the specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.