Abstract

Spectrum sensing is a critical component of the Cognitive Radio that detects the presence of primary user signal in a channel. In this paper energy detection technique based on Neyman-pearson criterion is used to detect the presence of deterministic primary user (PU) signals in the channel. We have considered three different kinds of modulated signal such as BPSK, QPSK , DVB-T (2K mode) under additive white Gaussian noise (AWGN) and Rayleigh fading channel environment as specified in IEEE 802.22 standard for validating the algorithm. The simulation result shows that the energy detector achieves the desired probability of detection (Pd≥0.9) with probability of false alarm (Pf≤0.1) at low signal to noise ratio (SNR) up to -8dB for QPSK and DYB-T modulated signal with sample size of 64. The algorithm is also implemented in Xilinx Yirtex2pro XC2VP30 (FFG896-7) Field Programmable Gate Array (FPGA). Hardware in loop (HIL) technique is used for verifying the algorithm in FPGA. The implementation result reveals that the algorithm fits into the Yirtex2pro FPGA and can execute with operating frequency between 110 to 138 MHz for different sample size of primary user signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.