Abstract

Object-detection and classification is a key task in micro- and nanohandling. The microscopic imaging is often the only available sensing technique to detect information about the positions and orientations of objects. FPGA-based image processing is superior to state of the art PC-based image processing in terms of achievable update rate, latency and jitter. A connected component labeling algorithm is presented and analyzed for its high speed object detection and classification feasibility. The features of connected components are discussed and analyzed for their feasibility with a single-pass connected component labeling approach, focused on principal component analysis-based features. It is shown that an FPGA implementation of the algorithm can be used for high-speed tool tracking as well as object classification inside optical microscopes. Furthermore, it is shown that an FPGA implementation of the algorithm can be used to detect and classify carbon-nanotubes (CNTs) during image acquisition in a scanning electron microscope, allowing fast object detection before the whole image is captured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.