Abstract
ObjectiveIntracerebral hemorrhage (ICH) is the most devastating stroke subtype. Transcription factor Forkhead box O1 (FoxO1) is extensively implicated in cerebral injury. This study investigated the mechanism of FoxO1 in neurological function recovery in ICH mice. MethodsA murine model of ICH was established. The modified neurological severity score (mNSS), forelimb placement test, and corner turn test were adopted to evaluate the neurological function of mice. The brain water content was measured and the pathological changes of cerebral tissues were observed. The levels of IL-1β, IL-6, and TNF-α were determined. The expressions of FoxO1, lncRNA GAS5, miR-378a-5p, and heat shock 70 kDa protein 5 (Hspa5) in mouse cerebral tissues were examined. The binding relationships among FoxO1, lncRNA GAS5, miR-378a-5p, and Hspa5 were validated. Functional rescue experiments were designed to verify the role of lncRNA GAS5/miR-378a-5p/Hspa5 axis in neurological function recovery in ICH mice. ResultsFoxO1 was highly expressed in cerebral tissues of ICH mice. FoxO1 silencing facilitated neurological function recovery in ICH mice, evidenced by decreased mNSS, improved forelimb placement rate, reduced turning defects, declined brain water content, relieved edema, intracellular vacuoles, and inflammatory cell infiltration, and reduced IL-1β, IL-6, and TNF-α levels. FoxO1 enhanced lncRNA GAS5 expression by binding to its promoter. LncRNA GAS5 facilitated Hspa5 transcription by sponging miR-378a-5p. Intervention of lncRNA GAS5/miR-378a-5p/Hspa5 axis reversed the promoting effect of FoxO1 silencing on the neurological function recovery in ICH mice. ConclusionFoxO1 silencing facilitated neurological function recovery in ICH mice via the lncRNA GAS5/miR-378a-5p/Hspa5 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.