Abstract

Although gefitinib prolonged the progression-free survival (PFS) of patients with non-small cell lung cancer (NSCLC), unpredictable resistance limited its clinical efficacy. Novel predictive biomarkers with explicit mechanisms are urgently needed. A total of 282 patients with NSCLC with gefitinib treatment were randomly assigned in a 7:3 ratio to exploratory (n = 192) and validation (n = 90) cohorts. The candidate polymorphisms were selected with Haploview4.2 in Hapmap and genotyped by a MassARRAY system, and the feature variables were identified through Randomforest Survival analysis. Tanswell and clonogenic assays, base editing and cell-derived tumor xenograft model were performed to uncover the underlying mechanism. We found that the germline missense polymorphism rs3742076 (A>G, S628P), located in transactivation domain of FOXM1, was associated with PFS in exploratory (median PFS: GG vs. GA&AA, 9.20 vs. 13.37 months, P = 0.00039, HR = 2.399) and validation (median PFS: GG vs. GA&AA, 8.13 vs. 13.80 months, P = 0.048, HR = 2.628) cohorts. We elucidated that rs3742076_G conferred resistance to gefitinib by increasing protein stability of FOXM1 and facilitating an aggressive phenotype in vitro and in vivo through activating wnt/β-catenin signaling pathway. Meanwhile, FOXM1 level was highly associated with prognosis in patients with EGFR-mutant NSCLC. Mechanistically, FOXM1 rs3742076_G upregulated wnt/β-catenin activity by directly binding to β-catenin in cytoplasm and promoting transcription of β-catenin in nucleus. Remarkably, inhibition of β-catenin markedly reversed rs3742076_G-induced gefitinib resistance and aggressive phenotypes. These findings characterized rs3742076_G as a gain-of-function polymorphism in mediating gefitinib resistance and tumor aggressiveness, and highlighted the variant as a predictive biomarker in guiding gefitinib treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.