Abstract

Radial Refractive Gradient (RRG) spectacles are lenses specifically designed to minimize peripheral hyperopic defocus typically found in conventional spectacles. Our goals were: (1) to demonstrate a method to design such lenses; and (2) to quantify the exact foveal vision power errors induced by them. The design procedure was based on a point-by-point sequential surface construction algorithm that designs a front aspheric surface (back surface is spherical) to achieve a given overall tangential focal length of the lens. A peripheral refraction model was built based on average peripheral refractive errors from a set of eyes. We designed four negative lenses with optical powers: -2.5, -5.0, -7.5 and -10.0D, so that the tangential focal length of the lens matches the retinal conjugate surface. The lenses induce very small sagittal power errors in a wide range of off-axis field angles (30°), solving the problem of peripheral hyperopic defocus. However, such designs introduce non-negligible mean power errors (above 0.25D from 7°, 6.8°, 7.1° and 7.8° for the -2.5, -5.0, -7.5 and -10.0D lenses, respectively) for foveal vision in a rotating eye. Our results show the unavoidable errors introduced by RRG spectacles when used for dynamic foveal vision. The described method offers valuable information towards determining the best trade-off between controlling power errors for peripheral and foveal vision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.