Abstract

In most tissue-based biomedical research, the lack of sufficient pathology training images with well-annotated ground truth inevitably limits the performance of deep learning systems. In this study, we propose a convolutional neural network with foveal blur enriching datasets with multiple local nuclei regions of interest derived from original pathology images. We further propose a human-knowledge boosted deep learning system by inclusion to the convolutional neural network new loss function terms capturing shape prior knowledge and imposing smoothness constraints on the predicted probability maps. Our proposed system outperforms all state-of-the-art deep learning and non-deep learning methods by Jaccard coefficient, Dice coefficient, Accuracy and Panoptic Quality in three independent datasets. The high segmentation accuracy and execution speed suggest its promising potential for automating histopathology nuclei segmentation in biomedical research and clinical settings. The codes, the documentation and example data are available on an open source at: https://github.com/HongyiDuanmu26/FovealBoosted. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.